A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models
نویسندگان
چکیده
The statistical modeling of social network data is difficult due to the complex dependence structure of the tie variables. Statistical exponential families of distributions provide a flexible way to model such dependence. They enable the statistical characteristics of the network to be encapsulated within an exponential family random graph (ERG) model. For a long time, however, likelihood-based estimation was only feasible for ERG models assuming dyad independence. For more realistic and complex models inference has been based on the pseudo-likelihood. Recent advances in computational methods have made likelihood-based inference practical, and comparison of the different estimators possible.In this paper, we present methodology to enable estimators of ERG model parameters to be compared. We use this methodology to compare the bias, standard errors, coverage rates and efficiency of maximum likelihood and maximum pseudo-likelihood estimators. We also propose an improved pseudo-likelihood estimation method aimed at reducing bias. The comparison is performed using simulated social network data based on two versions of an empirically realistic network model, the first representing Lazega's law firm data and the second a modified version with increased transitivity. The framework considers estimation of both the natural and the mean-value parameters.The results clearly show the superiority of the likelihood-based estimators over those based on pseudo-likelihood, with the bias-reduced pseudo-likelihood out-performing the general pseudo-likelihood. The use of the mean value parameterization provides insight into the differences between the estimators and when these differences will matter in practice.
منابع مشابه
Comparison of Maximum Pseudo Likelihood and Maximum Likelihood Estimation of Exponential Family Random Graph Models
The statistical modeling of social network data is difficult due to the complex dependence structure of the tie variables. Statistical exponential families of distributions provide a flexible way to model such dependence. They enable the statistical characteristics of the network to be encapsulated within an exponential family random graph (ERG) model. For a long time, however, likelihood-based...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Social networks
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2009